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THE PROPERTIES OF POLYCYCLIC HYDROCARBONS: ON THE
THEORY OF INCREMENTAL METHODS
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ABSTRACT

A short review of some incremental methods of estimating the properties of polycyelic conju-
gated hydrocarbons is given in order to introduce the conjugation circuits model. A quantum
derivation of this model is outlined and its applications to the prediction of resonance energies
and magnetic ring currents are discussed briefly. An extension of the conjugation circuits model
is presented to improve on the description of the magnetically induced currents in benzenoid
polyeyelic hydrocarbons,

INTRODUCTION

Incremental methods for the calculation of molecular properties are used
extensively in chemistry, For the calculation of thermodynamic properties and,
particularly, of binding energies, the method [1] which is followed usually con-
sists of considering (i) the sum of bond energies, (ii) the destabilization ener-
gies associated with steric hindrance or angular strain, and (iii) the stabiliza-
tion energies such as those due to electron delocalization.

Condensed polycyclic hydrocarbons constitute a class of molecules where
electron delocalization over the whole molecule is well known to play an im-
portant role. However, bond-energy schemes have been used with considerable
success, Tatevskii et al. [2] and McGinn [3] have proposed a scheme where
three types of aromatic carbon—carbon bonds are considered (Scheme 1).
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Using the values proposed by Cox and Pilcher [1] for these increments, the

estimated binding energies of molecules up to four rings may deviate by as

much as 6 kcal mol~! (in the case of 3,4-benzphenanthrene ). Bernstein [4]
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proposed a more elaborate method, where the carbon-carbon bond increments
are made to depend on the 7-bond order of that particular bond and the adja-
cent ones; the results [1], however, do not show any improvement relative to
the previous one.

Further improvement in the quantitative description and, especially, in the
understanding of the behaviour of these systems does not appear possible if
the idea of adding up regional increments is preserved. The alternative consists
of some sort of giobal analysis. This is done implicity, when a standard method
of calculation is used. Even in the simple Hiickel molecular-orbital method,
the adjacencies matrix used covers the whole molecule, as do the state func-
tions built as a result of the calculation. In the valence-bond method, each
structure considered also covers the whole molecule and no regional incremen-
tal method seems to be devisable to describe the molecular properties.

The method of conjugation circuits counting [5-8] is the most successful
attempt at devising a simple system of increments for the properties of poly-
cyclic conjugated hydrocarbons. Increments are not associated with particular
regions or fragments of the molecule but with paths that may extend over the
entire molecule, These paths are devised from the Kekulé structures associated
with the molecule. The method has been used for resonance energies [7-9]
and magnetic ring currents [5,6], either in the framework of a simplified ver-
sion of valence-bond theory [9], or in graph-theory language [8].

Another graph-theory inspired concept is the so-called topological reso-
nance energy [10]. Here, the always ambiguous definition of a reference en-
ergy, E,.;, to compute the resonance energy, Ep, as the difference Egp=E—E,;
is solved by special use of the Sachs’ formula [11] for the coefficients of the
characteristic polynomial (which is associated with, and has the same roots as,
the determinant of the adjacencies matrix). This formula allows the construc-
tion of the characteristic polynomial by the enumeration of certain subgraphs
of the molecular graph. By suppression of the subgraphs that contain cycles,
an acyclic polynomial is obtained. The difference between the roots of the two
polynomials gives a measure of the effect of the cycles upon the energy, the so-
called topological-resonance energy. This quantity correlates well in most cases
with more conventional measures of the resonance energy [12,13]; it may be
argued that the method evaluates the effect of the cyclic structures uncontam-
inated by other effects. However, it should be stressed that it is not possible,
in general, to associate a graph with the acyclic polynomial and thus a reference
chemical structure may not exist.

In the following section, an outline of the quantum theory of the conjugation
circuits model is presented and in the final section an extension of this model
is introduced for the case of benzenoid polycyclic hydrocarbons.

QUANTUM THEORY OF THE CONJUGATION-CIRCUITS MODEL

A simplified version of valence-bond theory may be used to lead to the model
of the conjugation circuits. The great simplifications required may raise sus-
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picion about their justification or the soundness of the final results in relation
to the initial formalism. This type of difficulty has been raised about resonance
theories [14,15] which do sometimes appear to follow molecular-orbital theory
more closely than (more) rigorous valence-bond theories. There is, however,
agreement about the good quality of the results obtained through this type of
approach and, for the present application, an invaluable insight to the problem
18 gained.

Consider 2n 7m-electrons in a structure with N C-C conjugated bonds. From
the ensemble of valence-bond structures, consider at this stage the Kekulé
structures only, The ground-state energy may be obtained as the lowest root
of the secular determinant |H,—E S,|. To compute the Hamiltonian and
overlap matrix elements, the superposition of structures { and j is examined to
identify the cycles (or circuits, as we prefer to call them in this context) of
double bonds that are found. Circuits may have any size with an even number
of sides, m=4, 6, §, ..., etc. The case of a superimposed double bond will be also
considered as a degenerate circuit with m=1.

The H,; matrix element is then easily calculated [16] as

Hy=2""Q+3/2a2 ,(m,~—e,)}—1/20 N} (1)

where the summation in » runs over all the ¢ circuits identified in the super-
position ij and e, is the number of bond connections between nodes of the
circuit ¥ such that the number of sides in each fragment of the circuit is even
{e.g. e,=1 for the 10-sided circuit, m=10, of azulene}. The overlap-matrix
element is simply given by

S;=20"" (2)

If we assume that the ground-state wavefunction is well represented by an
admixture of all Kekulé structures with equal weights, its energy, Egp, 18 given
by

ER’F:Zinzj/leSij 3)

This approximation has been shown [9] to give very good results, introducing
errors typically not larger than 2% for the kind of systems we consider here.
Equation (3} has been used for direct calculation in the resonance theories,
giving results surprisingly close to more sofisticated SCF-MO formalisms [17].

As the matrix elements H,; are computed in terms of the circuits found in
the corresponding superposition, eqn. (3) lends itself to alternative forms in
terms of increments associated with those circuits. It may be easily verified
that the set of circuits of dimension m=4, 6, 8, ..., etc. found in all superposi-
tions is the same as the set of conjugation circuits (i.e. circults with alternating
single and double bonds) found in all Kekulé structures taken individually.
For the energy and the magnetic currents, the values of these increments have
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been calculated non-empirically [5,6] and also estimated to best fit a set of
known values [7,8].

The discussion above is centred on the assumption that the Kekulé struc-
tures alone are sufficient to describe the properties of interest. It is hoped that
certain polar structures which, for benzene, Norbeck and Gallup [18] have
found to be very important (with an energy 0.027 a.u. lower than that of the
Kekulé admixture }, will be automatically taken into account when the values
of the increments are chosen as indicated above. The Dewar structures, how-
ever, may be of considerable importance; they are not considered in the most
simplified methods only due to the much increased complexity introduced in
the formalism.

Certain terms found in the magnetic current distribution do suggest that
they may be relevant in the present context of a conjugation-circuits theory.

EXTENSION OF THE CONJUGATION-CIRCUITS MODEL

In this section, an extension of the conjugation-circuits model is proposed
for the detailed description of the distribution of magnetic currents in benzen-
oid hydrocarbons.

Congider the five molecules depicted in Fig. 1 with the magnetic ring cur-
rents relative to benzene calculated using the method of Coulson et al. [19].

A comment should be given here about the way in which these ring currents
are defined. From the 7-electron ground-state SCF-MO wavefunction and its
first-order perturbation induced by an external magnetic field, the current
density is written as an #°— %#° function of the position. The expression of
this function may be made to appear as a summation over pairs of centres, each
centre of a p, orbital being identified with a carbon atom. The term associated
with a pair of atoms linked by a chemical bond, when integrated over all space,
is called the integrated bond current. (It should be noted that this quantity has
the dimensions of an electronic current times a length!). When we look at the
set of integrated bond currents for a molecule, they show a very nice current
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Fig. 1. Enumeration of the independent ring currents in naphthalene, phenanthrene, pyrene and
pervlene.
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TABLE 1

Ring currents relative to benzene (calculated by the method described in ref. 19 and estimated by
the conjugation circuits model in refs. 5 and 6)

Molecule Ring Ring Ring
current. current
[19] [5,6]
Naphthalene 1 1.074 0.99
Anthracene 2 1.055 0.84
3 1.285 1.08
Phenanthrene 4 1.128 1.07
5 0.952 0.86
Pyrene 6 1.387 1.20
7 0.940 0.80
Perylene 8 1.030 0.99
9 0.219 3.0

conservation, taking the molecular backbone as a Kirchhoff-type electrical
network. It is this feature that allows the definition of the ring currents pre-
sented in Table 1.

A case of particular interest is perylene, where the conjugation-circuits model
predicts a zero current in the central ring while the integrated current [19] (or
the London-Pople-McWeeny ring current [20]) is small but significantly dif-
ferent from zero (22% of that found in benzene), This prediction of the con-
jugation circuit model is obviously associated with the fact that none of the
nine Kekulé structures has double bonds between the two naphthalene frag-
ments, which thus appear to be independent. Immediate consequences of this
are: (a) a zero current across the central bonds, and (b) a resonance energy of
perylene estimated to be exactly twice that of naphthalene,

Consequence (b) concerning the resonance energy introduces only a small
error (2%, if the SCF-MO values of Dewar and Llano [21] are used ). However,
the error introduced in the prediction of the ring currents requires further
attention.

If we repeat the calculation of the integrated currents following the method
given in Ref. 19, small but non-vanishing currents are found between some
non-bonded centres as shown in Figs. 2 and 3 and tabulated in Table 2.

In Fig. 2, all independent interactions between carbon atoms located in the
1 and 4 relative positions in a chain with ¢is conformation are shown. (Current
terms which must vanish by symmetry are not mentioned.) In Fig. 3, the 1,4
interactions are shown similarly in chains in trans conformations. Inspection
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Fig. 3. Integrated currents between non-bonded centres in the 1,4-frans position.

of the values in Table 2 shows that 1,4-trans interactions produce currents
which are about 1% of that in the benzene ring or smaller. However, for 1,4-
cis interactions, values of 5% of the benzene current are common and larger
values (up to 20%) do occur in more favourable cases. A common feature of
these currents is their paramagnetic nature, partially compensating the dom-
inant diamagnetic nature of these molecules.

One problem that may be raised about these non-bonded currents is their
apparent non-conservation. In fact, while the bond currents represented in Fig.
1 do obey Kirchhoff’s node-conservation law, the non-bonded currents in Figs.
2 and 3 do not. However, one must be careful in dealing with these quantities
as they are the result of an integration of a current density term over all space.
For the bond currents, the more important region in this integration is close
to the mid-point between the two atoms or the bond, if this is understood as a
straight line in three-dimensional space between the two centres. For the non-
bonded currents, the situation is different. In the region of highest overlap,
midway between the two centres, there are normally several other terms giving
a contribution as sketched in Fig. 4.

Each term, individually cannot be expected therefore to satisfy some sort of
electric-network-conservation law, while the resultant term for each molecular
region suggests current density conservation. It should be noted, however, that,
for a current density derived from a crudely approximated wavefunction, rig-
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TABLE 2

Integrated currents between non-bonded centres (method of ref. 19), relative to benzene ring
current

1.4-cis Interactions 1.4-frans Interactions
Na. Current No. Current
1 0.0386 18 40101
2 0.0691 19 0.0119
3 0.0453 26 (¢.0012
4 0.8162 21 0.0099
il 01077 22 0.0088
& .6336 23 0.0029
7 .0023 24 0.0101
8 3.0556 25 0.0023
9 0518 26 0.0087
16 00322 a7 0.0118
11 3.05648 28 0.0022
12 80616 29 0.0086
13 0.0436 30 0.0092
14 4.2011 31 0.0093
15 .0052 32 0.0082
16 0.0332 33 0.0016
17 $.0313 4 0.0017

Fig. 4. Individual integrated currents between non-bonded centres in naphthalene {a) and their
regional resultants (b), suggesting how the overall current density is conserved.

orous local conservation {F-J =0) is not expected, as discussed by Atkins and
Gomes [22].

In an attempt to make predictions of integrated currents between 1,4-cis,
non-bonded centres of the type shown in Fig. 2, an extension of the conjugation
circuits model of Gomes and Mallion [6,5] is now devised. Currents of the type
shown in Fig. 3 are left out in this attempt as they appear to be consistently
smaller.

Let all conjugation circuits be considered that have one, and only one, side
along a 1,4-cis non-bonded interaction as shown in Fig. 5 for naphthalene. This
count is equivalent to considering the circuits in all superpositions between
Kekulé and Dewar-type structures in a straightforward extension of the formal
discussion in the previous section.

The conjugation circuit count for the 17 currents in Fig. 2 is presented in
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Fig. 5, Conjugation cireuits count for non-bonded currents in naphthalene. Individual conjugation

circuits are signed according to the Hiickel rule that associates a paramagnetic current to 4n-
annulenes.

TABLE 3

Conjugation-circuit count for the integrated currents depicted in Fig. 2

n i Ke i
00 10 20 30 40 31 41 52
1 0.0365 3 0 1 0 0 0 0 0 0
2 0.0091 1 -1 0 0 0 0 0 0
3 0.0453 4 0 1 1 0 0 0 0 0
4 0.0162 2 —1 -1 0 0 0 0 0
5 0.1077 5 1 2 1 0 0 0 0 0
8 0.0336 0 1 1 0 0 0 0 0
7 0.0023 -1 1 1 0 0 0 0 0
8 0.0556 1 1 0 0 0 0 0 0
9 0.0518 0 2 1 0 0 0 0 0
10 0.0322 0 1 1 0 0 0 0 0
11 0.0548 6 0 2 1 0 0 1 0 0
12 0.0616 1 1 1 0 0 0 0 0
13 0.0436 1 2 2 0 0 1 0 0
14 0.2011 9 4 5 3 1 1 3 2 1
15 0.0052 3 -3 0 0 0 0 0 0
16 0.0332 0 3 0 0 0 0 0 0
17 0.0313 0 3 0 0 0 0 0 0

*The number of Kekulé structures of the molecule.
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Table 3, where the symbol f,, represents a circuit that includes  benzene rings
and has j internal double bonds. A circuit f; has, therefore, an area of (1+
1/2) benzene ring areas but a periphery equivalent to that of (i—j+1/2) lin-
early arranged, condensed benzene rings.

The application of the model of the conjugation circuits requires the knowl-
edge of the values of the increments. Their estimation by a non-empirical tech-
nique like that used in the standard model [5,6] is not possible; the alternative
consists in fitting a set of expressions of the conjugation circuit count to known
integrated currents. If line 14 in Table 3 is excluded, the other 16 currents may
be fitted through their conjugation-circuits counts to just three parameters, foos
.o and fy, since parameter f;; may be related to fo, by the ratio of the corre-
sponding circuit areas, fi,="7.5 fa,. The values obtained through this fitting
are: f,,=0.1374, f,,=0.1106 and f,,=0.0611, with a standard deviation of
o=0.0050. The model used does therefore explain 80% of the variation among
the set of currents used.
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